Sunday, 26 July 2020

Technical terms for civil engineers

● maximum diameter of bar in slab should      not exceed = (1/8)×thickness of slab 

● dimensional tolerance of cube size = 2mm

● standard slope for staircase = 25° to 40°

● volume of one cement
                                      bag = 0.03472 m                                                               cube or 1.22 cft

● 1 inch = 8 soot

● 


Thursday, 11 June 2020

How to calculate the cost of one column



Example:


   Column size = 250mm×250mm

   Column height = 3.1 m

   Steel bar used = 4 nos

   Dia of bar        = 12mm 

Stirrup spacing = 150mm

Dia of stirrup     = 8mm

Volume of column = length×breadth×height
                                   = 0.25×0.25×3.1 m cube 
                                   = 0.19375 m cube 

Concrete grade M20 mix ratio-1:1.5:3

1 m cube concrete 
                required - 8 bag cement 
                                 - 15 cft sand
                                 - 30 cft aggregate 

                        Cement = 0.19375×8
                                        = 1.55 bag
   Rate Rs-380 per bag = 1.55×380
                                        = Rs-589

                         Sand     = 0.19375×15 cft
                                        = 2.9 cft
       Rate Rs-45 per cft = 2.9×45 
                                        = Rs-131 

                   Aggregate = 0.19375×30 cft
                                        = 5.81 cft
       Rate Rs-30 per cft = 5.81×30 
                                        = Rs-175

  Steel bar
    (i)  Main bar = 4×3.1 m
                            = 12.4 m
            Weight   = (D×D× length)/162  kg
                            = (12×12×12.4)/162  kg
                            = 11.02 kg
 
       (ii) stirrup  bar             
 No. of stirrup  = (height/spacing )+1
                            = (3.1/0.150)+1
                            = 21.66 
                 Let     = 22 nos

Total stirrup length = 22×0.648 m
                                     = 14.25 m
                  Weight      = (D×D×length)/162 kg
                                     = (8×8×14.25)/162 kg
                                     = 5.62 kg
  Total steel weight   = 11.02+5.62 kg
                                     = 16.64 kg
                              Let = 17 kg

    Rate Rs-50 per kg = 17×50 
                                    = Rs-850

Total column cost = 589+131+175+850
                                   = Rs-1745 ans.

  

Wednesday, 3 June 2020

1000 sqft slab casting cost 2020

        
  
  Slab size = 25×40 sqft 
                              = 1000 sqft 

 Slab thickness = 150 mm
   
         Beam size = 225mm×300mm

Volume of slab = 1000×0.5  cft
                              = 500 cft
                           
Horizontal beam
              volume = (length×breadth
                                 ×depth×no of beam)
                             = (25×0.75×(1-0.5)×4)
                             = 37.5 cft
Vertical beam
            volume  = (40-(4×0.75)×0.75×
                                (1-0.5)×3)
                            = 41.625 cft

Total slab volume = 500+37.5+41.625 cft
                                    = 579.12 cft

         Cft to m cube = 579.12÷35.315
                                    = 16.40 m cube 

Ready mix concrete
                         (RMC) = Rs-4500/m cube 
Total concrete cost = 16.40×4500
                                      = Rs-73800

Labour cost               = Rs-750/m cube 
                                      = 16.4×750 
                                      = Rs-12300


Total slab casting
                             cost = 73800+12300
                                      = Rs-86100



Note: for more information about the civil engineering watch video link below. 
https://youtu.be/ftzMHZcTpN8
                                           

Tuesday, 2 June 2020

House construction cost of 2000 sqft and materials quantity

  
   Class-A building cost
    Rs-1600 to Rs-2500 per sqft 

  Class-B building cost
   Rs-1000 to Rs-1200 per sqft 

  Class-C building cost
  Rs-750 to Rs-900 per sqft 


Materials quantity 

     1. Cement = 800 bags
     2. Sand      = 3000 cft
     3. Aggregate = 2000 to 2500 cft
     4. Steel bar   = 7 to 8 ton
     5. Bricks        = 18000 to 20000 


S.no    Items              %              cost

1.        Labour             25%          Rs-600000
2.        Bricks               12%          Rs-288000
3.        Cement             13%          Rs-312000
4.        Steel bar           10%          Rs-240000
5.        Sand and 
           Aggregate         7%            Rs-168000
6.        Doors and
           Windows          12%          Rs-288000
7.        Electric work   8%            Rs-192000
8.        Water and 
           Sewage              10%          Rs-240000
9.        Extra                  3%            Rs-72000

Grade of concrete and mix ratio


Monday, 1 June 2020

How to calculate load carrying capacity of the column




Example:

    Load = 400 kN

    Column size = 300mm×300mm

  No of steel bar used in column 4 nos

Diameter of bar used in column = 16mm

M20 grade concrete used 

Grade of steel = Fe 415 


  Formula:
     
     Pu = (0.4fck.Ac)+(0.67fy Asc)

   ( From IS-456 2000 code page no 71)

Where .

     Pu = axial load on the member
     Ac = area of concrete 
    fck = characteristic compressive 
              strength of the concrete 
      fy = characteristic strength of the
              compression reinforcement 
   Asc = area of longitudinal reinforceme
              -nt for column
      fck = 20
        fy = 415 


    Ac = Ag-Asc
    Ag = gross area of column 


    Ag = 300×300 mm square 
          = 90000 mm square 


   Asc = 4×((3.14×16×16)÷4) mm square 
           = 804.24 mm square 


    Ac = (90000-804.24) mm square 
          = 89196 mm square 


   Pu = (0.4×20×89196)+(0.67×415×804)
         = 937120.1 N
         = 937.1 kN ans.

According to the IS-456 2000 
Safety of factor = load /1.5
                               = 624.74 kN



Note: for more information watch video link below. 

https://youtu.be/pFDmAt0EWvE

    

Friday, 29 May 2020

How to calculate slab self weight


Example:

    Slab size = 3m×5m
                     = 15 m square 

  Slab Thickness = 0.15m or 15cm or 150mm

 Concrete density = 2400 kg/meter cube 

 Steel density         = 7850 kg/meter cube 


 Volume of slab = 0.15×1×1 m square 
                             = 0.15 m cube   
                             = 0.15×2400 kg/m square 
                             = 360 kg/m  square 

 0.8% steel provided to
 the total slab volume = (0.8/100)×0.15×7850
                                         = 9.42 kg/m square 


 Slab self weight = 360+9.42 kg/m square 
                               = 369.42 kg/m square 
                               = 3.69 kN/m square 
        Live load      = 2kN/m square 
        Dead load    = 1 kN/m square 


Slab self weight = 3.69+2+1 kN/m square 
                              = 6.69 kN/m square 


Total slab self weight = 6.69×15 kN
                                          = 100.35 kN ans.


According to IS-456 2000 
 Safety of factor = 1.5×load 
                     SOF  = 1.5×100.35 kN
                              = 150.52 kN



Sunday, 24 May 2020

How to calculate beam self weight



Example:

   Beam size = 300mm×450mm

  Beam length = 4.5 m

:. Concrete density = 2400 kg/m cube 
:. Steel density         = 7850 kg/m cube 

Volume of beam = 0.3×0.45×1 m cube 
                               = 0.135 m cube 
    In kg                  = 0.135×2400 kg
                               = 324 kg/m
2% steel provided to the total beam volume 
                               = (2/100)×0.135×7850 kg
                               = 21.19 kg/m

Self weight of beam = 324+21.19 kg/m 
                                      = 345 kg/m 

Total beam self weight = 345×4.5 kg
                                              = 1552.5 kg ans.


Note:according to the practical experience and also according to the IS-456 2000 code more information watch video link below. 
               https://youtu.be/eS7zFyZ3zeM       

Friday, 22 May 2020

How to transfer load from slab to foundation through column

Example:


        Built up area = 39.372 ft ×39.372 ft 

         Column size = 300mm×300mm

             Beam size = 250mm×375mm

    Column height = 3.1 m

Concrete density = 2400 kg/m cube 

       Steel density = 7850 kg/m cube 

    Slab thickness = 150mm

(i) column self weigh = 0.3×0.3×3.1 m cube 
                                          = 0.279 m cube 
                                          = 0.279×2400 kg
                                          = 669.6 kg
   1% steel provided to the total column volume                            = (1/100)×0.279×7850 
                                          = 21.9 kg
      column self weight = 669.6+21.9 kg
                                          = 692 kg
                                          = 6.92 kN
                                          = 7 kN


(ii) beam self  weight = 0.25×0.375×1
                                          = 0.09375 m cube  
                                          = 0.09375×2400 kg
                                          = 225 kg
2% steel provided to the 
total beam volume=(2/100)×0.09375×7850kg
                                  = 14.71 kg/m
          beam self weight = 225+14.71 kg
                                          = 240 kg
                                          = 2.4 kN/m


(iii) slab self weight = 0.15×1×1 m cube 
                                       = 0.15 m cube 
                                       = 0.15×2400 kg
                                       = 360 kg
0.8% steel provided to the total slab volume 
                               = (0.8/100)×0.15×7850 kg
                               = 9.42 kg
Slab self  weight = 360+10 kg
                               = 370 kg
                               = 3.7 kN                                          
Floor finish load = 1kN/m square 
             Live load = 2 kN/m square     
Slab  self  weight=3.7 +1+2 kN
                               = 6.7 kN/m square 
                               = 7kN/m square 

Total load acting on the foundation in one column        = 7+(2.4×8)+(7×16) kN
                               = 138.2 kN/column ans.

With safety factor = 138.2×1.5 kN
                                  = 207.3 kN/column. 

Note: for more information about this topic watch video link below. 
https://youtu.be/4YQSUaonoiE
              
               

                                                
                                           


Thursday, 21 May 2020

How to calculate reinforcement details of beam

Example:

Column size = 230mm×300mm 

Length of beam = 15 feet 

Dia of main bar used in beam
                        = 12mm

Number of bars = 4 nos

Diameter of stirrup bar = 8mm

Spacing of stirrup = 150mm

Total length of main bars = 15×4 feet
                                     = 60 feet 

Total length of main
             bar in meter = 60/3.28 m
                                     = 18.29 m
                                     = 19 m

Total weight of main 
                             bar = ((D×D)/162)×length 
                                    = ((12×12)/162)×19 kg
                                    = 16.88 kg
                                    = 17 kg

Number  of stirrup bar = 15 /3.28 m
                                           = 4.57 m
                                           = (4.57/0.15)+1
                                           = 32 nos
    
Cutting length of stirrup = 2(a+b)+hook                                        length-(no of bend×2d)

        a= breadth-(2×spacing)-(2d)
          = 230-(2×25)-(2×8)
          = 164mm

       b = depth-(2×spacing)-(2d)
          = 300-(2×25)-(2×8) mm
          = 234mm

      L = 2(164+224)+(2×10×8)-(3×2×8) mm
         = 908mm
         = 0.908  m
Total stirrup length = 0.908×32 m
                                     = 29.05 m

Total weight of stirrup steel bar 
                                     = ((d×d)/162)×length 
                                     = ((8×8)/162)×29.05 kg
                                     = 11.47 kg
                                     = 12kg

Total steel bar required for beam
                                     = 17+12 kg
                                     = 29 kg ans. 

Note:  for more details information watch video link below. 
https://youtu.be/FOPy6HZUHmg

           
     


Monday, 18 May 2020

How to calculate slab reinforcement details

Example:
             
    
            Spacing c/c = 150 mm
   
            Bar used = 10 mm dia

            Slab size = 12m× 6m

Number of main bar provided on the slab 
                             
                             = (12/0.15)+1
                             = 81 nos

Number of distribution bar provided on the slab 
                             = (6/0.15)+1
                             = 41 nos

Total Length of 
            main bar = 81×6 m
                              = 486 m

Total length of 
distribution bar = 41×12 m
                              = 492 m

Total steel bar 
length on slab    = 486m+492m
                              = 978 m

Total weight of steel bar required to the slab                      
                              = ((D×D)/162)×length 
                              = ((10×10)/162)×978 m
                              = 603.7 kg
                              = 604 kg ans.

                              

Sunday, 17 May 2020

What is one way and two way slab

What is one way slab 
          One way slab supported by beams on the two opposite sides to carry the load along one direction. In one way slab the ratio of longer span l to shorter span b is equal or greater than 2.

        = (longer span l/shorter span b)>2

        =(L/b)>2


What is two way slab 
          Two way slab supported by beams on the four sides and the loads are carried by the supports along both directions. It is known as two way slab. The ratio of longer span l to shorter span is less than 2.

        = (l/b)<2



Note: more details information about this article watch video link below. 
https://youtu.be/AaPTOsLGuUQ

Friday, 15 May 2020

What is bricks | types of bricks

What is brick
          A brick is building material used to make walls. Pavements and other elements in masonry construction. Traditionally term brick referred to a unite composed of clay, but it is now used to denote rectangular units of clay - bearing soil, sand, lime and concrete materials. 

Types of bricks 
        (i) burnt clay brick 
       (ii) fly ash brick 
      (iii) concrete brick 


(i) What is burnt clay brick
           Burnt clay bricks are the classic form of brick created by pressing wet clay into molds, then drying and firing then in kilns. This is a very old building materials. Type of brick found in many of the ancient structures of the world. 


(ii) What is fly ash brick 
           Fly ash brick is a building materials specifically masonry units containing class fly ash and water compressed at 28 mpa (272 atm) and cured for 24 hours in 66• c steam bath then toughened with an air entrainment agent.



(iii) What is concrete brick 
              Concrete brick is a mixture of cement and aggregate, sand and cement formed in molds and cured. Certain mineral colours are added to produce a concrete brick resembling clay.







Note: watch above information explain in video link below.                       
https://youtu.be/qrZ612_NB-w
                         


Wednesday, 13 May 2020

How to calculate building loads



Example:                                                                      
Column size = 300mm×450mm
Beam size = 250mm×450mm
Wall thickness = 200mm
Slab thickness = 150mm

(i) column load calculation 
Column height =3.1m
Column volume = 0.3×0.45×3.1                     
                   = 0.418 meter cube 
            = 0.418×2400 kg
   = 1003.2 kg
(Unit weight of concrete = 2400 kg/meter                                 cube )
1% steel provided of column total volume 
                             =(1/100)×0.418×7850 kg
 =32.8 kg
(unit weight of steel = 7850 kg/meter cube)
Total weight of one column = 1003.2+32.8 kg
  = 1036 kg
   = 10.36 kn

(ii) beam weight calculation 
Volume = 0.25×45×1         
                     =0.1125 meter cube 
                = 0.1125×2400 kg 
            = 270 kg/meter 
2%  steel provided of beam total volume 
                              = (2÷100)×0.1125×7850 kg
 = 17.66 kg
Total weight of beam = 270+17.7 kg                
      = 287.7 kg/m
   =2.87 kn/m
Total beam length = (12.4×3)+(7.5×4) m           = 67.2 m   

(iii) brick wall weight calculation 
Volume  = 0.2×1×3.1              
               = 0.62 meter cube 
        = 0.62×2000 kg
   = 1240 kg/m
= 12.4 kn  
(Unit weight of bricks 1600 to 2000 kg/m cube)
Total length of wall = (12.4×2)+(7.5×3)+                             (6×3)+8+3.1
        = 76.4 m
 
(iv) slab weight calculation 
            Volume = 0.15×1×1 m cube 
                  = 0.15 m cube 
                                  = 0.15×2400 kg/m square 
                    = 360 kg/m squar 
0.8% steel provided of slab total volume 
                                 = (0.8÷100)×0.15×7850 kg
                       = 9.42 kg/m square 
Total slab weight = 360+9.42 kg                    
                         = 369.2 kg/m square 
                        = 3.69 kN/m square 
For floor finish = 1 kN/m square          
For live load = 2 kN/m square     
Total slab weight = 3.69+1+2                        
                         = 6.69 kN/m square 
                    = 7 kN/m square 

According to IS-456 2000
Safety of factor = 1.5                    
Total building load = 1875.8 kn               
                     Fos = 1875.8×1.5 kn
                             = 2813.7 kn ans.










 

Tuesday, 12 May 2020

What is hook

Hook is provided in stirrup for the reasons.
(i) hooks are provided for resist seismic movement
(ii) to prevent concrete from splitting outward. 
(iii) it prevent slippage of steel from the concrete. 
(iv) to keep longitudinal steel bars in position and hold steel tighty.

How to calculate cutting length of stirrup 
        According to the is-456 2000 formula 

 L = 2( a+b)+hook length - bend

L = 2(a+b) + 10d - 2Nd

Where d- diameter of stirrup bar

             a- length of column size 

            b- breadth of column size 

            L- total length of stirrup 

            N- number of bend


                  

Saturday, 9 May 2020

How to become a good civil engineer

According to the civil engineering skills based knowledge can judge a good civil engineer or not. Similarly the below steps you can analyse yourself that you are a good civil engineer or not. If you follow the given steps you will become a good civil engineer.


Step:1
           Fresh civil engineers should know               how to select proper site for                           building construction.

Step:2
          Fresh civil engineers should know               how to measure plot area and built             up area.

Step:3
           Fresh civil engineers should know               to mark column position. 

Step:4
           Fresh civil engineers should know               how to find out the foundation                      depth and width. 

Step:5
           Fresh civil engineers should know               how to proper excavation of                          footing and pcc thickness. 

Step:6
           Fresh civil engineers should know               the reinforcement details of                           footing and size of footing during                 casting.

Step:7
          Fresh civil engineers should know,              how to find size  of column. 

Step:8
           Fresh civil engineers should know               how  to find size of beam or how to              find depth and breadth of beam.

Step:9
           Fresh civil engineers should know.              how to settlement proper strength              of slab reinforcement details. 

Step:10
            Fresh civil engineers should know               above all steps as well as proper                   construction rule.


For more information about the above mentioned watch video link below. 
https://youtu.be/Rv6T8n5sQh0

Monday, 4 May 2020

What is residential buildings


What is residential buildings. 
         Residential building is defined as the building which provides more than half of its floor area for dwelling purposes. In other words residential building provides sleeping,  accommodation with or without cooking, dining or both facilities. 


Types of residential buildings. 

          (i) single- family home or private                      dwelling 

         (ii) lodging or rooming house 

        (iii) dormitories building 

         (iv) apartments building 

          (v) hotels building 


(i) what is single- family home or private       dwelling .
                 Single houses or private dwellings
are generally owned by members of a single family only. If more than once family residing in that building then it is called as multiple family private dwelling.


(ii) what  is lodging or rooming house 
          Lodging or rooming house are multiple or group of buildings which come under one management. In this case accommodation is provided for separately for different individuals on temporary or permanent basis.



(iii) what is dormitories residential                   building.
                     Dormitories residential building
are another type of residential buildings, in which sleeping accommodation is provided together for different individuals. School, hostel, military barracks etc comes under the dormitories residential building.


(iv) what is apartments. 
             Apartments or flats are large buildings which consists separate dwellings for different families. Apartments are will residues minimum three or more families living independently of each other.


(v) what is hotels
           Hotels are just like lodging houses and also managed by single management but they provide accommodation primarily on temporary basis. Inn, motels etc comes under the hotels category.


For more information about the articles visit website link below.
https://youtu.be/DXk-dn0uXl4


Friday, 1 May 2020

Standard size of rooms in residential buildings

1). Bedroom                        - 10'×12' to 14'×16'

2). Drawing room or         - 14'×16' to 18'×24'
      Living room

3). Dining room                  - 12'×14' to 14'×16'

4). Guest room                    - 10'×12'

5). Verandah                       - 6'×10'

6). Kitchen                           - 8'×13' to 10'×12'

7). Pantry                             - 8'×10'

8). Store room                     - 8'×8' to 10'×12'

9). Bathroom / water closet
     combined                        - 4'×6' to 6'×8'

     separate bathroom       - 4'×6'

     separate water closet   - 4'×4'

10). Garage / parking         - 10'×16' to 16'×20'
     
11). Dressing room            - 6'×6' to 6'×9'

above all dimensions are taken in 'feet'

Note: for more information about the above mentioned standard size of rooms please watch video link below.
https://youtu.be/3gLuzyiIUCk

Types of buildings as per National Building Code of India

According to the National Building Code of India divided into the 9 groups such as below


Group A - Residential buildings 

Group B - Educational buildings 

Group C - Institutional buildings 

Group D - Assembly buildings 

Group E - Business buildings 

Group F - Marcantile buildings 

Group G - Industrial buildings

Group H - storage buildings 

Group  I - Hazardous buildings 

............explain.........

Group B educational buildings 
         Educational building means a building exclusively used for a school or university or any other competent authority,  involving assembly for instruction, education or recreation incidental to education use, and including a
building for such other uses as research. 
Example: school, college, university and hostel.


Group C Institutional buildings 
          Related to building health care, education, recreation or public works. Construction services teams that specialise in this type of work build everything from hospitals and elementary schools to all three facility and university buildings. 



Group D assembly buildings 
          Assembly building is defined as the place of gathering people for a different purpose such as theatre, hall, drama hall, auditorium, museum, exhibition hall, restaurant, place of worship, dance hall, club house, sport stadium etc is called assembly building. 


Group E business building
          Any building or part in which using for transaction of record there for, offices, banks, all professional establishments, court houses classified as business buildings.
Example: shop, parlour etc.



Group F Mercantile buildings
           A building or part in which used as a shops, stores, market for display and sale of wholesale or retail goods or merchandise, including office, storage and service facility incidental there there to locate in the same building. 
Example:shop, offices, store, market, showroom, for display wholesale or retail. 



Group G industrial buildings 
         Industrial purposes as factories and other premises used for manufacturing, altering repairing, cleaning, washing, breaking up, adapting or processing any articles. 
Example:product fabricated, plant, smoke house, gas palnt ,refinaries, dairies, textile mills and saw mill.



Group H storage buildings 
         Storage building such as warehouse, cold storage, freight depots, transit sheds, store house, trucks, marine terminals, garage, and stables.



Group I Hazardous buildings 
        Hazardous buildings manufacture of highly explosive materials, poisonous fume,
highly corrosive, toxic, acid and other chemical products. 
Example:fiber, poison, chemicals etc.



Note:  for more information about the above the all types watch this video link below. 
https://youtu.be/Bb-nluBPhik
https://youtu.be/5Ygv6YulD8o